Accessing Forbidden Glass Regimes through High-Pressure Sub-Tg Annealing
نویسندگان
چکیده
Density and hardness of glasses are known to increase upon both compression at the glass transition temperature (Tg) and ambient pressure sub-Tg annealing. However, a serial combination of the two methods does not result in higher density and hardness, since the effect of compression is countered by subsequent annealing and vice versa. In this study, we circumvent this by introducing a novel treatment protocol that enables the preparation of high-density, high-hardness bulk aluminosilicate glasses. This is done by first compressing a sodium-magnesium aluminosilicate glass at 1 GPa at Tg, followed by sub-Tg annealing in-situ at 1 GPa. Through density, hardness, and heat capacity measurements, we demonstrate that the effects of hot compression and sub-Tg annealing can be combined to access a "forbidden glass" regime that is inaccessible through thermal history or pressure history variation alone. We also study the relaxation behavior of the densified samples during subsequent ambient pressure sub-Tg annealing. Density and hardness are found to relax and approach their ambient condition values upon annealing, but the difference in relaxation time of density and hardness, which is usually observed for hot compressed glasses, vanishes for samples previously subjected to high-pressure sub-Tg annealing. This confirms the unique configurational state of these glasses.
منابع مشابه
Irreversibility of Pressure Induced Boron Speciation Change in Glass
It is known that the coordination number (CN) of atoms or ions in many materials increases through application of sufficiently high pressure. This also applies to glassy materials. In boron-containing glasses, trigonal BO3 units can be transformed into tetrahedral BO4 under pressure. However, one of the key questions is whether the pressure-quenched CN change in glass is reversible upon anneali...
متن کاملLiquid–liquid phase separation in alkali-borosilicate glass. An impedance spectroscopy study
We followed the first stages of liquid–liquid phase separation in an alkali-borosilicate glass by complex impedance spectroscopy at constant temperatures below and above the glass transition temperature, Tg. We found a new feature of the electrical conductivity behavior: at temperatures below Tg, the electrical conductivity, r, diminished with time, while above Tg, the electrical conductivity i...
متن کاملDSC Methods to Quantify Physical Aging and Mobility in Amorphous Systems: Assessing Molecular Mobility
The specific heat capacity (Cp) of amorphous sucrose was determined by DSC after annealing at a particular temperature within the glass transition (Tg) region. The enthalpy recovery after physical aging was obtained from the Cp data through the Tg region after several aging times. This data was fitted to the empirical Williams-Watts equation to obtain values for the mean molecular relaxation ti...
متن کاملعلائم ابررسانایی دانهای و اثرهای جوزفسون در اندازهگیریهای ماکروسکوپی: ابررساناهای جدید
We report systematic investigations of the magnetic superconducting properties of the new superconducting materials (NS): New high temperature superconductors (HTS), Organic superconductors (OS), fullerenes, carbon nanotubes, MgB2 etc. We show that, contrary to conventional superconductors where the superconducting state can be coherent over several tenths of km, the macroscopic coherence ran...
متن کاملEffects of Thermal and Pressure Histories on the Chemical Strengthening of Sodium Aluminosilicate Glass
Glasses can be chemically strengthened through the ion exchange process, wherein smaller ions in the glass (e.g., Na+) are replaced by larger ions from a salt bath (e.g., K+). This develops a compressive stress (CS) on the glass surface, which, in turn, improves the damage resistance of the glass. The magnitude and depth of the generated CS depend on the thermal and pressure histories of the gl...
متن کامل